Introduction	Model	Analysis	Product differentiation	Conclusion

Knowledge Transfer and Partial Equity Ownership

Arghya Ghosh and Hodaka Morita

School of Economics, UNSW Business School

University of New South Wales

2nd ATE Symposium, UNSW, December 2014

Introduction	Model	Analysis	Product differentiation	Conclusion
Introduction				

- Strategic alliances are often accompanied by partial equity ownership (PEO) in many cases (equity strategic alliances).
 - 2000: Vodafone 15% stake in Japan Telecom; benefit from Vodafone's global leadership in mobile communications, access to worldwide technology, content and expertise
 - 2004: Harvey World Travel 11% holding in Webjet; strategic development partner which would enhance Webjet's ability to capitalize on opportunities in rapidly changing travel market in Australian region
 - 2010: Groupe Aeroplan Inc (AIMIA since 2011) 20% stake in Club Premier (AeroMexico's frequent flyer program); benefit from Aeroplan's knowhow and develop the necessary skill sets critical to its successful transformation into profitable coalition program

- One objective of strategic alliances: Knowledge transfer.
- Licensing and contracting play important roles in transferring explicit or codified knowledge which is transmittable in formal, systematic language

- Equity ownership can play a critical role in facilitating the transfer of tacit knowledge.
 - Mowery, Oxley and Silverman (1996).
 - Gomes-Casseres, Hagedoorn and Jaffe (2006)

- Partial equity ownership induces transfer of knowledge between alliance partners.
- This paper explores oligopoly models that capture this important link.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	Model	Analysis	Product differentiation	Conclusion
Storyline				

- Consider an industry consisting of n + 2 firms, where firm 1 has superior knowledge. The knowledge is not contractible.
- Firms 1 and 2 have an option of forming an equity strategic alliance in which firm 1 owns a fraction $\theta \in [0, 1]$ of firm 2's share, while other *n* firms are assumed to be independent.
- The equilibrium level of PEO, θ^* , is endogenously determined.

$$heta^* = 1 \Rightarrow \mathsf{Merger}$$

- $\theta^* \in (0, \frac{1}{2}] \Rightarrow$ Partial equity ownership (PEO)
- $\theta^* = 0 \Rightarrow \text{Independent/status quo}$

Introduction	Model	Analysis	Product differentiation	Conclusion
Storyline				

- Consider an industry consisting of n + 2 firms, where firm 1 has superior knowledge. The knowledge is not contractible.
- Firms 1 and 2 have an option of forming an equity strategic alliance in which firm 1 owns a fraction $\theta \in [0, 1]$ of firm 2's share, while other *n* firms are assumed to be independent.
- The equilibrium level of PEO, θ^* , is endogenously determined.

$$heta^* = 1 \Rightarrow \mathsf{Merger}$$

- $\theta^* \in (0, \frac{1}{2}] \Rightarrow$ Partial equity ownership (PEO)
- $\theta^* = 0 \Rightarrow \text{Independent/status quo}$
- **Q1**: Can PEO arise as an equilibrium outcome? [YES]

Introduction	Model	Analysis	Product differentiation	Conclusion
Storyline				

- Consider an industry consisting of n + 2 firms, where firm 1 has superior knowledge. The knowledge is not contractible.
- Firms 1 and 2 have an option of forming an equity strategic alliance in which firm 1 owns a fraction $\theta \in [0, 1]$ of firm 2's share, while other *n* firms are assumed to be independent.
- The equilibrium level of PEO, θ^* , is endogenously determined.

$$heta^* = 1 \Rightarrow \mathsf{Merger}$$

- $\theta^* \in (0, \frac{1}{2}] \Rightarrow$ Partial equity ownership (PEO)
- $\theta^* = 0 \Rightarrow \text{Independent/status quo}$
- **Q1**: Can PEO arise as an equilibrium outcome? [YES]
- Q2: Can endogenously determined PEO improve welfare? [YES]

- Homogenous product Cournot oligopoly models with *n* firms and constant MC.
- Exogenously given levels of PEO: v_{ik}.
- Symmetric costs (Reynolds and Snapp, 1986)
 - PEO $\uparrow \Rightarrow$ Output $\downarrow \Rightarrow$ Consumer Surplus \downarrow , Welfare \downarrow
 - PEO involving two firms is never profitable
- Asymmetric costs (Farrell and Shapiro, 1990)
 - PEO involving two firms can be profitable only if a high-cost firm has PEO in a low-cost firm.

 Introduction
 Model
 Analysis
 Product differentiation
 Conclusion

 Relationship to the literature (cont.)
 Conclusion
 Conclusion
 Conclusion
 Conclusion

How does PEO affect the firms' ability to engage in tacit collusion?

- Malueg (1992).
- Gilo, Moshe and Spiegel (2006).

Several papers hinted at the link between PEO and knowledge transfer (Reynolds and Snapp, 1986; Reitman, 1994).

- \Rightarrow How?
- \Rightarrow Why form PEO and why not merge?
- \Rightarrow Are PEO (when endogenously determined) welfare improving?

- An industry with n + 2 firms.
- Inverse demand P(Q) satisfying P'(Q) < 0 and P'(Q) + QP''(Q) < 0
- Firms 1 and 2 can form an equity strategic alliance, and firm 1 can transfer its knowledge to firm 2.
- Constant marginal costs:

$$c_1 = c - x$$

•
$$c_3 = ... = c_{n+2} = c$$

c₂ = c − kx where c > x > 0 and k = 1 if there is knowledge transfer and k = 0 otherwise

Introduction	Model	Analysis	Product differentiation	Conclusion
Timing				

Stage 1 [Alliance formation]:

Firms 1 and 2 jointly choose the level of firm 1's ownership in firm 2's equity, denoted θ (\in [0, 1]), and the monetary terms of the equity transfer (\Rightarrow common knowledge).

Stage 2 [Knowledge transfer]:

Firm 1 determines whether or not to transfer its knowledge to firm 2 (\Rightarrow common knowledge); k = 0 or 1.

Stage 3 [Product market competition]:

If $\theta \in [0, \frac{1}{2}]$, each firm *i* chooses q_i . If $\theta \in (\frac{1}{2}, 1]$, firm 1 chooses q_1 and q_2 and firm m (= 3, ..., n + 2) chooses q_m .

 Introduction
 Model
 Analysis
 Product differentiation
 Conclusion

 Stage 3: Product market competition

Define

$$\widetilde{\pi}_1 = [P(Q) - (c - x)]q_1
\widetilde{\pi}_2 = [P(Q) - (c - kx)]q_2$$

Profits of firms 1, 2 and m(=3,...,n+2) respectively are:

$$\begin{aligned} \pi_1 &= \tilde{\pi}_1 + \theta \tilde{\pi}_2 \\ &= [P(Q) - (c - x)]q_1 + \theta [P(Q) - (c - kx)]q_2, \\ \pi_2 &= (1 - \theta) \tilde{\pi}_2 = (1 - \theta) [P(Q) - (c - kx)]q_2, \\ \pi_m &= [P(Q) - c]q_m. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Introduction
 Model
 Analysis
 Product differentiation
 Conclusion

 Stage 3: Product market competition
 Conclusion
 Conclusion<

Equilibrium quantities when $\theta \in [0, \frac{1}{2}]$:

$$\begin{aligned} q_1^*(\theta, k) &= -\frac{(1-\theta)(P(Q^*) - (c-x)) + \theta(1-k)x}{P'(Q^*)}, \\ q_2^*(\theta, k) &= -\frac{P(Q^*) - (c-kx)}{P'(Q^*)}, \\ q_m^*(\theta, k) &= -\frac{P(Q^*) - c}{P'(Q^*)}, \end{aligned}$$

where m = 3, ..., n + 2, and Q^* is implicitly given by the following equation:

$$(n+2-\theta)(P(Q^*)-c)+x(1+(1-\theta)k)+Q^*P'(Q^*)=0.$$

(日) (日) (日) (日) (日) (日) (日) (日)

 Introduction
 Model
 Analysis
 Product differentiation
 Conclusion

 Stage 3: Product market competition

Equilibrium quantities when $\theta \in (\frac{1}{2}, 1]$.

$$egin{array}{rll} q_1^*(heta,k) &=& -rac{P(Q^*)-(c-x)}{P'(Q^*)}, \ q_2^*(heta,k) &=& 0, \ q_m^*(heta,k) &=& -rac{P(Q^*)-c}{P'(Q^*)}, \end{array}$$

where m = 3, ..., n + 2, and Q^* is implicitly given by the following equation:

$$(n+2)(P(Q^*)-c)+x+Q^*P'(Q^*)=0.$$

Introduction Model Analysis Product differentiation Conclusion Joint profit decreasing in θ

- $\pi_i^*(\theta, k)$: each firm *i*'s profit in stage 3 equilibrium
- $\pi_{12}^*(\theta, k) \equiv \pi_1^*(\theta, k) + \pi_2^*(\theta, k)$: joint profit of firms 1 and 2 in stage 3 equilibrium.

Lemma 1: Suppose that

(i) there are at least two firms outside the alliance, or (ii) there is one firm outside the alliance and inverse demand is concave (i.e., $P''(Q) \le 0$)

Then, joint profits of firm 1 and 2, $\pi_{12}^*(\theta, k)$ is strictly decreasing in θ for all $\theta \in [0, \frac{1}{2}]$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

 Introduction
 Model
 Analysis
 Product differentiation
 Conclusion

 Stage 2:
 Knowledge transfer decision

- Let $\theta \in [0, \frac{1}{2}]$ be given.
- Firm 1 transfers knowledge to firm 2 $\Leftrightarrow \pi_1^*(\theta, 1) > \pi_1^*(\theta, 0)$:

• When does this condition hold? \Rightarrow Proposition 1.

Proposition 1 [Knowledge transfer]: Suppose $\theta \in [0, \frac{1}{2}]$. There exists a threshold $x_{max} > 0$ with the following property: For any given $x < x_{max}$, there exists $\tilde{\theta}(x) \in (0, \frac{1}{2}]$ and $\bar{\epsilon} > 0$ such that

$$\pi_1^*(\tilde{\theta}(x) - \epsilon, 1) - \pi_1^*(\tilde{\theta}(x) - \epsilon, 0) \le 0 \le \pi_1^*(\tilde{\theta}(x) + \epsilon, 1) - \pi_1^*(\tilde{\theta}(x) + \epsilon, 0)$$

holds for all $\epsilon \in [0, \overline{\epsilon})$ and the equality holds if and only if $\epsilon = 0$.

Definition: Define $\hat{\theta}(x, n)$ the lowest value of $\tilde{\theta}(x, n)$ satisfying the inequality as the *minimum PEO for knowledge transfer*,

troduction Model Analysis Produc

Product differentiation

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Figure 2: Minimum PEO for linear demand

y: Firm 1's incremental profit by transferring its knowledge.

Introduction Model Analysis Product differentiation Conclusion Stage 1: Choice of θ

 At Stage 1, firms 1 and 2 jointly choose θ to maximize their joint profit in the subsequent equilibrium.

• Let $\Pi_{12}(\theta)$ denote the joint profit of firms 1 and 2 in the equilibrium of stage 2 subgame.

Introduction Model Analysis Product differentiation Conclusion

Figure 3: Possible candidates for optimal θ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

There exists $x_{min} \in (0, x_{max})$ such that (i) $0 < x \le x_{min}$ $\Rightarrow \theta = \theta^*(x) \equiv 0$, no knowledge transfer. (ii) $x_{min} < x \le x_{max}$ $\Rightarrow \theta = \theta^*(x) \equiv \hat{\theta}(x)$, knowledge transfer. (iii) $x_{max} < x < \bar{x}$ $\Rightarrow \theta = \theta^*(x) \equiv 1$ (merger). Introduction Model Analysis Product differentiation Conclusion

PEO effect vs Knowledge transfer effect

- \blacksquare PEO itself implies joint profit \downarrow
- \blacksquare Knowledge transfer induced by PEO leads to ioint profit \uparrow

 For intermediate values of x knowledge transfer effect dominate and PEO is profitable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\hat{\theta} = \frac{\tilde{\pi}_1(c-x,c) - \tilde{\pi}_1(c-x,c-x)}{\tilde{\pi}_2(c-x,c-x) - \tilde{\pi}_2(c-x,c)}$$

 Introduction
 Model
 Analysis
 Product differentiation
 Conclusion

 PEO as an equilibrium outcome

$$\bullet \hat{\theta} = \frac{\tilde{\pi}_1(c-x,c) - \tilde{\pi}_1(c-x,c-x)}{\tilde{\pi}_2(c-x,c-x) - \tilde{\pi}_2(c-x,c)}$$

$$\lim_{x\to 0} \hat{\theta}(x) > 0.$$

For small x, adverse PEO effect dominates and hence firms prefer to stay independent.

$$\blacksquare \lim_{x\to \bar{x}} \hat{\theta}(x) > 1;$$

For large x, no θ high enough to induce PEO; merger is profitable.

Thus, PEO, if profitable must be for intermediate values of x.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Introduction
 Model
 Analysis
 Product differentiation
 Conclusion

 PEO as an equilibrium outcome

Proposition 2

Let $\theta^*(x)$ denote the equilibrium level of PEO. There exists a range of parameter values for x, denoted X, with the following property: For any given $x \in X$, there exists a value n(x) such that firms 1 and 2 choose $\theta = \theta^*(x) = \hat{\theta}(x) \in (0, \frac{1}{2}]$ if $n \ge n(x)$.

Note: Proof relies on $\lim_{x\to 0, n\to\infty} \hat{\theta}(x) = 0$.

Introduction Model Analysis Product differentiation Conclusion
Welfare improving PEO

Proposition 3

There exists $X_W \subset X$, with the following property: For any given $x \in X_W$, there exists a value $n_W(x)(\ge n(x))$ such that $\theta^*(x, n) = \hat{\theta}(x, n)$ and $TS(\theta^*(x, n), n) > TS(0, n)$ if $n \ge n_W(x)$.

Introduction Model Analysis Product differentiation Conclusion

Linear demand: PEO can increase consumer surplus

- Compare CS at $\theta = \theta^*$ (> 0) and $\theta = 0$.
- PEO \Rightarrow Weaker competition \Rightarrow *CS* \downarrow .
- PEO induces knowledge transfer \Rightarrow Reduce costs \Rightarrow *CS* \uparrow .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The latter effect dominates the former when x is in an intermediate range.

 Introduction
 Model
 Analysis
 Product differentiation
 Conclusion

 Linear demand:
 PEO can increase consumer surplus (cont.)

Proposition 3L [Consumer surplus]:

(A) If n = 1, PEO reduces CS for all x.

- (B) Suppose $n \ge 2$.
- (i) PEO reduces CS if x is small.
- (ii) **PEO** increases **CS** if x is in an intermediate range.
- (iii) If x is large, firms 1 and 2 merge, and the merger reduces CS.

Introduction Model Analysis Product differentiation Conclusion Conclusion Linear demand: PEO is more likely to increase CS as $n \uparrow$

- The "intermediate range" gets larger as n ↑. That is, PEO is more likely to increase CS as n ↑.
- Why? The minimum PEO $\hat{\theta}(x, n)$ decreases as $n \uparrow$.
- ⇒ Holding x fixed, knowledge transfer can be induced at a lower PEO as $n \uparrow$.

Introduction Model Analysis Product differentiation Conclusion
Linear demand: PEO and total surplus

Proposition 4L [Total surplus]:

(A) Suppose n = 1.

(i) PEO reduces TS if x is small.

(ii) PEO increases TS if x is in an intermediate range.

(iii) If x is large, firms 1 and 2 merge, and,

• the merger reduces TS if x is not very large,

• the merger increases TS if x is very large.

(B) If $n \ge 2$, **PEO** increases **TS** for all x.

Introduction Model Analysis Product differentiation Conclusion
Implications for competition policy

 Consider an antitrust/competition authority whose objective is to maximize total surplus (or consumer surplus).

- At Stage 0, the authority can announce a maximum permissible level of PEO, denoted $\tilde{\theta} \in [0, 1]$.
- The authority announces $\tilde{\theta}$ only if it is necessary.

- Firms 1 and 2 choose the minimum PEO $\hat{\theta}(x, n)$ whenever they intend to induce knowledge transfer.
- Both TS and CS are decreasing in the degree of PEO, θ, holding everything else constant.

■ ⇒ Competition authority's relevant option: Impose no restrictions on PEO or prohibit PEO. Introduction Model Analysis Product differentiation Conclusion
Product differentiation

- 3 firms
- Linear differentiated oligoply:

$$p_i = a - q_i - b(q_j + q_k),$$
 $i, j, k \in \{1, 2, 3\}; i \neq j \neq k.$

- $b \in (0,1]$ denotes the degree of product differentiation
- b = 1 refers to homogenous product case; lower $b \Rightarrow$ higher degree of differentiation

Introduction Model Analysis Product differentiation Conclusion

Joint profits under b = 0.6

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Firms 1 and 2 might prefer PEO even without knowledge transfer.
- In the case of knowledge transfer, firms might prefer θ that is higher than minimum PEO required to induce knowledge transfer.
- Partial permission of PEO: Competition authority might agree to a lower level of PEO than the level most preferred by the firms

- In the U.S., cases of PEO in a competitor had gone mostly unchallenged by antitrust agencies (see Gilo, 2000).
- However, they have recently begun to pay increasing attention to the possible antitrust harms of PEO.
- Several legal scholars have argued that PEO results in antitrust harms (Gilo, 2000; O'Brien and Salop, 2000, 2001).
- European authorities are considering to review all PEO cases that involve more than 30% ownership

Introduction Model Analysis Product differentiation Conclusion
Concluding remarks

- Partial equity ownership (PEO) can play an important role for inducing knowledge transfer when knowledge is tacit
- We explored oligopoly models in which the level of PEO is endogenously determined through the link between PEO and knowledge transfer.
 - Partial equity ownership occurs in equilibrium when x is in the intermediate range, while merger occurs when x is large.
 - Endogenously determined levels of PEO can increase both total surplus and consumer surplus under a range of parameterizations.
- Competition policy is clear-cut in case of homogenous products: prohibit or permit PEO suggested by the alliance; Potential conflicts regarding the level of PEO in differentiated products