Horizontal mergers in the presence of vertical relationships

Arghya Ghosh, UNSW Hodaka Morita, UNSW Chengsi Wang, Mannheim

2nd ATE Symposium, 2014

Introduction

- Firms in an industry procure intermediate products from firms in vertically related upstream industries and / or sell intermediate products to firms in downstream industries.
 - automobile manufacturers purchase steel, tires, and a number of parts produced in other industries;
 - general constructors purchase cement, steel, and other construction materials produced by other firms.
- Does vertical relationship/upstream market structure affect (matter for) the welfare consequence of downstream (upstream) horizontal mergers?

Introduction

- Literature typically assumes a perfectly competitive upstream sector:
 - input price is not affected by downstream mergers.
 - no welfare gain or loss in the upstream sector induced by downstream mergers.
- This paper explicitly considers vertical relationships when evaluating the welfare consequence of a horizontal merger.

Main results

- Study horizontal mergers among symmetric downstream firms.
- Identify two channels through which downstream mergers may improve total welfare.
 - Upstream cost asymmetry.
 - reallocation: downstream merger ⇒ reduce input price ⇒ shift production towards more efficient firms ⇒ improve production efficiency.
 - Upstream free entry.
 - rationalization: downstream merger ⇒ reduce input price
 ⇒ firm exit but each remaining firm produces more ⇒
 improve production efficiency.

Literature: a selective overview

- Williamson (1968): fundamental tradeoff between market power and efficiency gains.
- Comprehensive welfare analysis: Farrell-Shapiro (1990)
 - Mergers reduce total welfare in a Cournot model if
 - equally efficient firm/no reshuffling;
 - constant unit cost;
 - no synergies among merging firms.
 - Same configuration, but we also consider an upstream sector (cost asymmetry/free entry).
- Recent advance: Nocke-Whinston (2010, 2013)
 - other important aspects in merger problems: dynamic interaction between isolated mergers, unobservable merger choices, optimal policies.
- Horizontal mergers in vertical related markets: bilateral trade, specific demand functions, small number of firms.

Setting

- Framework: Successive oligopoly (Salinger, 1988).
- Downstream Cournot:
 - M firms producing homogeneous final products, Q units in total.
 - Inverse demand P(Q) satisfying:
 - P'(Q) < 0 (downward-sloping demand)
 - (M+1)P'(Q) + QP''(Q) < 0 for all $M \ge 1$ (existence and uniqueness)
- Upstream Cournot:
 - N firms producing homogeneous intermediate products, X.
 - Constant marginal cost: $c_1 \leq c_2 \leq \dots \leq c_N$.
 - potential free entry.
 - One unit input transforms to one unit final output.

Sequence of moves

- A horizontal merger takes place in the downstream sector, $dM < 0. \label{eq:merger}$
- In mechanism I, the number of upstream firm is fixed/ In mechanism II, entry takes place in the upstream sector.
- Upstream Cournot competition.
- Downstream Cournot competition.

Downstream competition

• Each downstream firm i = 1, 2, ..., M takes input price as given and chooses q_i to maximize

$$(P(q_i + \sum_{j \neq i} q_j) - r)q_i.$$

• The equilibrium individual output is

$$q_i(r) = -\frac{(P(Q(r)) - r)}{P'(Q(r))}$$

where Q(r) solves MP(Q) + QP'(Q) = Mr.

- Total demand for input: X = Q(r).
- Inverse demand for input: $r = g(X) \equiv P(X) + XP'(X)/M$.

Upstream Cournot competition

• Each upstream firm u = 1, 2, ..., N chooses x_u to maximize

$$(g(x_u + \sum_{v \neq u} x_v) - c_u)x_u.$$

• Solving the maximization problem gives

$$x_u^* = -\frac{g(X^*) - c_u}{g'(X^*)},$$

where X^* solves $Ng(X) + Xg'(X) - \sum_u c_u = 0$. (additional regularity conditions guarantees the existence and uniqueness of upstream equilibrium.)

- Summary:
 - $x_u^* \Rightarrow X^* \Rightarrow g(X^*) = r^*.$
 - $\bullet \ r^* \Rightarrow Q(r^*) \Rightarrow P(Q(r^*)) \Rightarrow q_d^*.$

Characterize input-price change

- A merger takes place in the downstream sector: dM < 0 (ignoring integer constraint).
- Denote

$$\epsilon_d = \frac{QP''(Q)}{P'(Q)}$$

the elasticity of slope of the inverse demand function for final products, and

$$\epsilon_u = \frac{Xg''(X)}{g'(X)}$$

the elasticity of slope of the inverse demand function for inputs.

Characterize input-price change

Result

A downstream merger reduces input prices iff

$$\epsilon_u > \epsilon_d \ \Leftrightarrow \ \frac{d\epsilon_d}{dQ} > 0.$$

• Following a merger, the change of input price is purely driven by the variation of elasticity of P'(Q).

Example $P = (1 - Q)^{b}$ • $b = 1, \epsilon_{u} = \epsilon_{d} = 0.$ • $b > 1, \epsilon_{u} > \epsilon_{d}.$ • $b < 1, \epsilon_{u} < \epsilon_{d}.$

Mechanism I: upstream reallocation

- No free-entry, but asymmetric upstream firms.
- Consumer surplus

$$CS = \int_0^{X^*} P(y) dy - P(X^*) X^*.$$

• Downstream merger always reduces consumer surplus. Following a merger, $M \downarrow \Rightarrow X^* \downarrow$

$$\frac{dX}{dM} = \frac{X^*(N+1+\epsilon_d)}{M(M+1+\epsilon_d)(N+1+\epsilon_u)} > 0.$$

Mechanism I: reallocation effect

• What about welfare?

$$W = \int_0^{X^*} P(y) dy - \left(\sum_u c_u s_u\right) X^*,$$

where $s_u = x_u/X$ is upstream firm u's market share.

Upstream reallocation

• Impact of downstream merger:

$$\frac{dW}{dM} = \underbrace{(P - \sum_{i=1}^{n} c_u s_u) \frac{dX^*}{dM}}_{+} - \underbrace{X^* \frac{d(\sum_{i=1}^{n} c_u s_u)}{dM}}_{+?}.$$

- Even if $dX^*/dM > 0$, dW/dM < 0 can hold, i.e. efficiency improves, if $d(\sum c_u s_u)/dM > 0$.
- Reduction in average industry cost, $\sum c_u s_u$.
 - shift production towards more efficient firms.

Input price

- Q: when does downstream merger reduces upstream average cost?
- A: input price must go down.
- Intuition:
 - $\sum c_u s_u \downarrow \Leftrightarrow s_u \uparrow$ for more efficient firms.
 - Suppose $c_i < c_j$, *i* more efficient than *j*.
 - As $r \downarrow$, production is reallocated towards more efficient firms.

$$\frac{x_i}{x_j} = \frac{r - c_i}{r - c_j} = 1 + \frac{c_j - c_i}{r - c_i}.$$

• But we know that $r \downarrow \Leftrightarrow \epsilon_u > \epsilon_d$.

A tighter condition

• Another decomposition:

$$\frac{dW}{dM} = \sum (P^* - c_k) \frac{dx_k^*}{dM}.$$

- dW/dM < 0 requires $dx_k/dM < 0$ at least for small k = 1 (most efficient firm).
- $dx_1/dM < 0$ requires

 $\epsilon_u > \epsilon_d + 1.$

Necessary and sufficient condition

Result

A downstream merger improves total welfare iff:

$$\epsilon_u - \epsilon_d > 1 + \frac{\frac{1}{H} \left(1 + \frac{N+1+\epsilon_d}{M+1+\epsilon_d}\right) + 1 + \epsilon_d}{N - \frac{1}{H}}.$$

i $\epsilon_u - \epsilon_d$ large enough (significant input price reduction).

ii Large Herfindal Index $H = \sum_{u} s_{u}^{2}$ helps (concentrated upstream industry): a mean-preserving spread of unit cost \Rightarrow increase H without changing $X^{*} \Rightarrow$ more likely for mergers to be welfare-improving.

Numerical example

• $P(Q) = (1 - Q)^b$ with b > 0 (Malueg, 1992).

• $N = 6, b = 0.05, c_1 = 0.1, \text{ and } c_k = 0.8 \text{ for } k \neq 1.$

M	ϵ_d	ϵ_u	x_1^*	x_k^*	X^*	r^*	H^*	W^*
4	6.380	10.71	0.734	0.0273	0.870	0.827	0.716	0.658
3	5.481	9.394	0.742	0.022	0.852	0.821	0.762	0.662
2	4.357	7.666	0.755	0.013	0.821	0.812	0.848	0.668

Mechanism II: rationalization

• Symmetric firms but free-entry in the upstream.

$$(r^* - c)x^* = K.$$

• Again, downstream merger reduces consumer surplus:

$$\frac{dX^*}{dM} = \frac{X^*(2N^* + 1 + \epsilon_d)}{M(2N^* + \epsilon_u)(M + 1 + \epsilon_d)} > 0.$$

Welfare-improving merger

• What about total surplus?

$$W = \int_0^{X^*} P(y) dy - cX^* - N^*K = \int_0^{X^*} P(y) dy - r^*X^*.$$

• Downstream merger:

$$\frac{dW}{dM} = \underbrace{(P^* - r^*)\frac{dX^*}{dM}}_{+} - \underbrace{X^*\frac{dr^*}{dM}}_{+?}$$

• Since $dX^*/dM > 0$, $dr^*/dM > 0$ is necessary for welfare improvement.

- In presence of free entry, $(r^* c)X^* = NK$.
- Reduction in industry average cost: $r^* = c + K/x^*$.
 - drive out some upstream firms, and each remaining firm produces more.

Input price

• With free-entry, input price reduction is harder following a downstream merger.

Result

Following a downstream merger, r^* decreases (increases) iff

$$\epsilon_u - \epsilon_d > 1.$$

- Additional effect when free-entry is present:
 - downstream merger \Rightarrow lower upstream entry \Rightarrow upward pressure on input price.

Welfare improvement

Result

A downstream merger improves welfare if and only iff:

$$\epsilon_u - \epsilon_d > 1 + \frac{2N + 1 + \epsilon_d}{M + 2 + \epsilon_u}.$$

Another explanation

• Another decomposition:

$$\frac{dW}{dM} = \underbrace{\frac{\partial W}{\partial M}}_{>0} + \underbrace{\frac{\partial W}{\partial N}}_{?} \underbrace{\frac{dN}{dM}}_{>0}$$

- $\partial W/\partial N < 0 \iff$ excessive entry in the upstream is necessary for welfare improvement.
- When is entry excessive?
 - Mankiw-Whinston (1986): business stealing effect.

Excessive entry

• Further decomposition:

$$\frac{dW}{dM} = \underbrace{(P-c)\frac{\partial X}{\partial M}}_{\text{market power}(+)} + \begin{bmatrix} (P-r)M\frac{\partial q}{\partial N} \\ \text{business creating}(+) \end{bmatrix} + \underbrace{(r-c)N\frac{\partial x}{\partial N}}_{\text{business stealing}(-)} \end{bmatrix} \frac{dN}{dM}$$

- Following a downstream merger:
 - market concentration: fewer downstream firms \Rightarrow final output \downarrow .
 - business-creating effect: upstream exit \Rightarrow final output \downarrow .
 - business-stealing effect: upstream exit \Rightarrow each entrant's output^{\uparrow}.

Graphic explanation

Numerical example

P(Q) = (1 - Q)^b.
M = 5, c = 0.01, k = 0.3, and b = 0.1.

M	\hat{Q}	ϵ_u	ϵ_d	\hat{r}	\hat{N}	Ŵ
5	0.874	13.22	6.260	0.700	2.010	0.205
4	0.861	11.76	5.569	0.6942	1.963	0.208
3	0.841	10.02	4.748	0.686	1.894	0.212
2	0.805	7.863	3.724	0.673	1.781	0.217

Upstream horizontal merger

- Everything else remains the same except
 - additional production cost for downstream firms: a_k .
 - cost asymmetry $(a_j \le a_k \text{ if } j < k)$ or free entry in downstream sector.
- Look for welfare-improving upstream merger.

Upstream horizontal merger

• Instead of the change of r^* , what's important now is the change of $P^* - r^*$ following a upstream merger.

Result

$$\frac{d(P^* - r^*)}{dN} > 0 \quad \Leftrightarrow \quad \epsilon_d > -1.$$

• $N \downarrow \Rightarrow r^* \uparrow$ and $P^* \uparrow$.

• $\epsilon_d > -1$ (inverse demand strictly log-concave) $\Rightarrow P^*$ does not increase as much as r^* .

Reallocation in downstream sector

• Suppose $a_j > a_i$. Then $P^* - r^* \downarrow \Rightarrow s_i^* / s_j^* \uparrow \Rightarrow$ improvement in production efficiency.

Result

With downstream asymmetry, upstream merger increases welfare iff

$$\epsilon_d(H_d - \frac{1}{M}) > \frac{M + N + 1 + \epsilon_d}{MN}.$$

• A MPS of a_s : $H_d \uparrow$ while X^* unchanged \Rightarrow welfare improvement more likely.

Rationalization in downstream sector

- With downstream free-entry, $p^* r^* \downarrow$ following an upstream merger iff $\epsilon_d > 0$.
- Free-entry makes reduction of $P^* r^*$ harder: upstream merger \Rightarrow downstream exit \Rightarrow additional upward pressure on $P^* r^*$.

Result

With downstream free-entry, upstream merger increases welfare iff

$$\epsilon_d > \frac{2(M^*+1)}{N-2}.$$

Conclusion

- Horizontal merger in a vertically related market:
 - characterization of the change of input price.
 - two mechanisms for welfare improvement.
 - common necessary condition: input price reduction.
- Future work:
 - bring back synergies/threshold of CS-improving synergies.
 - merger waves across vertically related industries.